AN EFFICIENT PROCEDURE FOR THE SYNTHESIS AND ISOLATION OF (+)-(2R,3R,ll R,12R)- AND (-)-(2S,3S,llS,12S)-TETRAPHENYL-18-CROWN-6

John Crosby,^a Martin E. Fakley,^b Colin Gemmell,^c Kelth Martin,^c Andrew Quick,^d Alexandra M.Z. Slawin, ^e Hooshang Shahriari-Zavareh, ^C J. Fraser Stoddart, ^C **and David J. Willlamse**

- **a ICI** FCMO, Hexagon House, Blackley, Manchester M9 **3DA,** UK
- b ICI C&P Limited, P O Box 1, Billingham, Cleveland TS23 1LB, UK
- C Department 01 Chemistry, **The** University, Sheffield S3 7HF, UK
- d University of London Computing Centre, 20 Guilford Street, London WC1 **Nl** DZ, UK
- e Department of Chemistry, Imperial College, London SW7 2AY. UK

Summary: The enantiomers of the chiral 2.3-diphenyl- and 2.3.11.12-tetraphenyl-1.4.7.10.13.16-hexaoxacyclo*octadecanes have been preparedin single step reactions from the readily-available chiralprecursors,* (RR)- *and (5%).hydrobenzoins, followed by bulk isolations of the pure Id-crown-6 derivatives via their I.9 crystalline complexes* with potassium nitrate (for the diphenyl derivative) or calcium nitrate (for the tetraphenyl derivative), obtained directly *from the worked-up crude reaction mixtures: X-ray crystal structures characterise the uncomplexed (RRRR)tetraphenyi-l&crown-6 and the 1 :I complex formed between its (SSSS)-enantiomer and calcium nitrate.*

During the last fifteen years, chiral crown ethers¹ have been employed extensively in molecular recognition **processes designed** for the enantiomeric differentiation of racemic substrates and as a basis for the creation of enzyme mimics and analogues.² Both enantiomers, i.e. (RRRR)-TP18C6 and (SSSS)-TP18C6, of 2,3,11,12tetraphenyl-1,4,7,10,13,16-hexaoxacyclo-octadecane³⁻⁶ have been employed successfully as chiral auxiliaries (1) *in* stoichiometric amounts to form ammonia-borane adducts⁷ capable^{8,9} of effecting the enantioselective reductions of prochiral aromatic ketones [PhCOR where $R = Me$, Et, Prⁱ, Bu^t] to the corresponding (S) and (R) aromatic secondary alcohols with enantiomeric excesses of up to 90% and (2) *in catalytic amounts* to provide potassium cyanide complexes¹⁰ capable^{9,11} of promoting the asymmetric phase transfer formation, with benzaldehyde as substrate and benzoyl chloride as trapping agent, of the optically-active benzoylated cyanohydrins in up to 40% enantiomeric excess. The stereospecific synthesis^{3,8} of (RRRR)-TP18C6 and (SSSS)-TP18C6 by base-promoted reactions of (RR)- and (SS)-hydrobenzoin respectively with diethyleneglycol bistosylate gives the TP18C6 derivatives in chemical yields which rarely exceed 25%, following difficult and painstaking purification by silica gel chromatography.

(RRRR)-TPl6C6 *(RRRRj-TA18C6* (RR)-DP18C6

Moreover, until last year, resolved samples of (RR) - and (SS) -hydrobenzoin were relatively hard to accumulate in any useful quantities, following classical procedures such as (1) spontaneous resolution of enantiomers by entrainment¹² or (2) fractional crystallisation of diastereoisomeric derivatives, e.g. bismenthoxyacetates.³ This situation was transformed dramatically with the announcement¹³ from the Sharpless group at MIT of a highly efficient catalytic asymmetric cis-dihydroxylation procedure¹⁴ whereby the pure enantiomers of hydrobenzoin can be obtained¹⁵ reliably and efficiently on a 100 g scale from the inexpensive prochiral precursor, trans-stilbene. Thus, it is now possible¹⁵ to synthesise (RRRR)-TP18C6 and (SSSS)-TP18C6 stereospecifically from (RR)- and (SS)-hydrobenzoins, provided an efficient regime for isolating enantiomeric TP18C6 derivatives can be found. Here, we report on a procedure¹⁶ by which (*RRRR*)-TP18C6 and (SSSS)-TP18C6 can be crystallised directly from their crude reaction mixtures using calcium nitrate¹⁷ as the complexing agent. Subsequent decomplexation can be achieved by partitioning the complexes between chloroform and water to afford the pure TP18C6 enantiomers in up to 42% yield. The *uncomplexed* (RRRR)-enantiomer and the *calcium nitrate complex* of the (SSSS)-enantiomer have both been characterised¹⁸ by X-ray crystallography: we take the opportunity to compare their solid state structures with those of the most closely-related 18C6 derivatives^{5,6,19} and their complexes.^{5,8,9,17}

In contrast with the 1:1 adduct formed^{8,9} between (*RRRR*)-TP18C6 and ammonia-borane, where one pair of vicinal phenyl groups is axial whilst the other pair is equatorial, in the 1:1 complex of calcium nitrate with (SSSS)-TP18C6, all four phenyl substituents are pseudo-equatorial (Figs. 1 and 2). The structure of (SSSS)-TP18C6.Ca(NO₃)₂ differs strikingly from that of the analogous Ca(NO₃)₂ complex¹⁷ of (2R,3R,11R,12R)-2,3,11,12-tetramethyl-18-crown-6, where all four methyl groups are pseudo-axial. The all-equatorial orientation of the phenyl substituents in (SSSS)-TP18C6.Ca(NO₃)₂ allows ion-pairing of the axially-disposed nitrate ligands to the 10 -coordinate calcium ion. 20

In common with (SSSS)-TP18C6.Ca(NO3)₂ and (RRRR)-TA18C6,¹⁹ both crystallographically independent molecules of uncomplexed (RRRR)-TP18C6 have their four phenyl groups arranged equatorially. Although one (Fig. 3a) of these two molecules has $-$ like (*RRRR*)-TA18C6¹⁹ - molecular C₂ symmetry, the other (Fig. 3b) does not. Interestingly, the C_2 symmetric (RRRR)-TP18C6 possesses two almost eclipsed --OCH₂CH₂O- units, a feature not observed previously in any of the diastereoisomeric 2,3,11,12-tetraphenyl- or 2,3,11 ,12-tetra-anisyl-18-crown-6 derivatives.^{5,8,9,19}

Since the procedure reported here for synthesising and isolating (RRRR)-TP18C6 and (SSSS)-TP18C6 avoids the use of chromatography, it is convenient to operate it on a gram scale. The method, which has also been employed successfully²¹ by us²² to obtain pure samples of (RR)-DP18C6 and (SS)-DP18C6, via their 1:1 complexes *(cf. ref. 17)* with KNO₃, *is probably quite a general one.*

Fig. 1. Ball-and-stick representation of the major occupancy conformation of $(SSSS)$ -TP18C6.Ca(NO₃)₂ with torsional angles shown on the macrocyclic ring

Fig. 2. Space filling representation of $(SSSS)$ -TP18C6.Ca(NO3)2

Fig. 3. Ball-and-stick representation of the two crystallographically independent conformations [(a) and (b)] of (RRRR)-TP18C6 in the crystal. Torsional angles are shown on the macrocyclic rings.

References **and Footnotes**

- 1. J.F. Stoddart, *Top. Sfereochem.,* 1987, **17, 207.**
- **2.** J.F. Stoddart, in M.I. Page (Ed): *The* Chemistry of Enzyme *Action,* Elsevier, Amsterdam, 1984, p. 529; in M.I. Page and A. Williams (Eds): Roy. Sot. *Chem. SpecialPublication on Enzyme Mechanisms,* 1987, p. 35.
- **3.** A. Merz, M. Eichner, and R. Tomahogh, Liebigs Ann, *Chem., 1981,* 1774; F. Dietl, A. Merz, and R. Tomahogh, *Tetrahedron Letf., 1982. 52%.*
- **4.** J. Yamashita, M. Minigawa, A. Sonobe, S. Ohashi, M. Kawamura, K. Shimizu, and H. Hashimoto, *Chem. Lett., 1982,1409.*
- **5.** G. Weber, G.M. Sheldrick, Th. Burgemeister, F. Diell, A. Mannshreck, and A. Merz, *Tetrahedron, 1984, 40. 855.*
- **6.** *E.* Blasius, R.A. Rausch, G.D. Andreetti, and J. Rebizant. *Chem. Ber.,* 1984, **117, 1113.**
- **7.** H.M. Colquhoun, G. Jones, J.M. Maud, J.F. Stoddart, and D.J. Williams, J. *Chem. Sot., Dalton Trans.,* 1984, 63.
- **8.** B.L. Allwood, H. Shahriari-Zavareh, J.F. Stoddatt, and D.J. Williams, d *Cherm. Sac., Chem. Commun.,* 1984, 1461.
- **9.** J.F. Stoddart, Biochem. Sot. Trans., 1987, 15, 1188.
- **10.** R. Cheneven. Ft. Plante, and N. Voyer, Syn. *Commun., 1983,13,403.*
- 11. H.M. Colquhoun, J.F. Stoddatt, and D.J. Williams, **New** *Scienlist, No 1506,* 1 May 1986, p. 44.
- 12. A. Collet, M.-J. Brienne, and J. Jacques, Chem. Revs., 1980, 80, 215.
- 13. E.N. Jacobsen, I. Mark& W.S. *MunQall,* G. Schrcder, and K.B. Sharpless, *J. Am. Chem. Sot,,* 1988, 110. 1968.
- 14. J.S.M. Wai, I. Mark& J.S. Svendsen, M.G. Finn, E.N. Jacobsen, and K.B. Sharpless, *J. Am.* Chem. Sot., 1989, 111, 1123.
- 15. We are grateful to *PrOfeSSor K. Barry* Sharplessfor providing us with details of the method prior to its publication. It provided samples of (RR)- and (SS)-hydrobenzoins with optical purities of 99%.
- 16 The crude reaction product (2.45 *Q),* obtained after a conventional work up of a reaction (90°C for 3 days) of (SS)-hydrobenzoin (1 .O g, 4.7 mmol) with diethyleneglycol bistosylate (1.90 g, 9.5 mmol) in dry dioxane (150 ml) containing NaH (250 mg) and K₂CO₃ (65 mg), was dissolved in dry CHCl₃ (25 ml), and excess (5.65 g) of dry $Ca(NO₃)$ - prepared by grinding the tetrahydrate into a fine white powder and drying (100°C) it under reduced pressure (0.05 mm Hg) for 6 h - was added portionwise during 30 min with stirring under N₂. [If less Ca(NO₃)₂ is used, then the yield of the Complex decreases.] The suspension was stirred at 45°C for 48h, before being cooled and filtered to remove excess of Ca(NO₃)₂. The filtrate was concentrated to afford a yellow paste (2.45 g) which solidified on addition of Et₂O (20 ml). After dissolving the solid product in CHCl₃ (8 ml), dry DME (6 ml) was added, whereupon the solution became cloudy. Addition of no more than 0.5 ml of CHCI3 removed the cloudiness and the solution was cooled to 0°C. [The volumes employed of both the solvent and the precipitant are critical. If the solution is too concentrated, impurities will contaminate the 1:1 complex. Conversely, if the solution is too dilute, then a low yield of the 1:1 complex will be obtained.] Seed crystals (15 mg) of pure

(SSSS)-TP18C6.Ca(NO₃)₂ were introduced and the solution was allowed to stand at -30°C under Ar for 18 h. [Again, the amount of seed crystals employed is important. If the amount used is too much, crystallisation will occur too quickly and the resulting 1:1 complex will be impure. If less than 10 mg of seed crystals is used, they tend to dissolve in the solution - even at low temperatures -- before crystallisation of the 1:1 complex occurs.] The crystalline precipitate (1.57 g) of the 1:1 complex was filtered off, washed with cold hexane (5 ml) and dried under vacuum. [A few single crystals of (SSSS)-TP18C6.Ca(NO3)2.0.75CH₂Cl₂, m.p. > 300°C, suitable for X-ray crystallography, were grown by slow evaporation of a solution (1 ml) of the 1:1 complex (10 mg) in CH₂Cl₂:DME $(3:1, v/v)$. The 1:1 complex was redissolved in CHCl₃ (10 ml) and the solution was extracted with H₂O (15 ml). The CHCI₃ solution was separated, dried, and concentrated to give crystalline (SSSS)-TP18C6 (1.11 g, 42%), m.p. 112°C (lit.³ m.p. 113-114°C), [a]_D -8.2° (c, 0.9 in CHCl₃), δ_H (CDCl₃) 3.62-3.94 (16H, m, 8 x CH₂), 4.55 (4H, s, 4 x CH), and 6.89-7.25 (20H, m, 4 x C₆H₅). A similar procedure was used to prepare (*RRRR*)-TP18C6, m.p.

113 °C (lit.³ m.p. 113-114°C), $[\alpha]_D$ +7.9° (c, 0.9 in CHCl₃) in 36% yield from (RR)-hydrobenzoin. Recrystallisation of (RRRR)-TP18C6 from CH₂Cl₂-n-pentane afforded single crystals suitable for X-ray structural analyses.

- 17. The purification of (2R,3R,11R,12R)-tetramethyl-1,4,7,10,13,16-hexaoxacyclo-octadecane has been achieved by forming a crystalline complex with calcium nitrate. See R.B. Dyer, D.H. Metcalf, R.G. Ghirardelli, R.A. Palmer, and E.M. Holt, *J. Am. Chem. Sac.,* 1986,108,3621.
- 18. Crystal data: For (SSSS)-TP18C6.Ca(NO₃)₂.0.75CH₂Cl₂: tetragonal, a = 11.898(8), c = 56.412(33) Å, *V* = 7986 Å³, space group $P4_32_12$, $Z = 8$, $p = 1.32$ g cm⁻³, μ Cu-Ka = 28 cm⁻¹, 4322 independent observed reflections $[|F_0| \ge 3\sigma(|F_0|)$, $\theta \le 58^\circ$]. For (RRRR)-TP18C6.CH₂Cl₂: monoclinic, $a = 8.835(2)$, $b = 23.419(5)$, $c = 16.939(6)$ Å, $\beta = 96.51(2)$ °, $V = 3482 \text{ Å}^3$, space group $P2_1$, $Z = 4$ (2 crystallographically independent molecules), p = 1.25 g cm⁻³, µCu-K α = 20 cm⁻¹, 3807 independent observed reflections [[F_o] \geq 3 σ ([F_o]), 20 ≤ 116°]. Data for both structures were measured on a Nicolet R3m diffractometer using the ω-scan routine with graphite-monochromated *Cu-Ka* radiation. Both structures were solved by direct methods and refined anisotropically to give for (*SSSS*)-TP18C6.Ca(NO₃)₂.0.75CH₂Cl₂, $R = 0.072$, $R_w = 0.080$ (there being two alternative sites observed for (C11) with occupancies of 40 and 60%), and for (RRRR)-TP18C6.CH₂Cl₂, $R = 0.068$, $R_w = 0.068$. Further details of the crystal structure investigations can be obtained from the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW.
- 19. D.A. Pears, H. Shahriari-Zavareh, J.F. Stoddart, J. Crosby, B.L. Allwood, A.M.Z. Slawin, and D.J. Williams, *Acta Cryst.,* 1988,C44,1097,1101,1104, 1106,1109,1112,1115,1118.
- 20. Coordination [Ca...O] distances are in the range 2.44-2.64 **A apart** from those involving O(1) and O(lO), which are 2.73 and 2.80 **A,** respectively.
- 21. The crude reaction product (1.7 g), isolated after reaction (reflux for 16 h) of (RR) -hydrobenzoin (0.8 g, 3.7 mmol) with pentaethyleneglycol bistosylate (1.9 g, 3.7 mmol) in dry dioxane (205 ml) containing NaH (0.18 g, 7.5 mmcl), was dissolved in CHCl₃ (18 ml) and dry powdered KNO₃ (2 g) was added portionwise and the mixture was stirred vigorously under N₂ for 18 h. After filtering off the excess of KNO₃, the CHCl₃ solution was concentrated to afford a solid residue (1.8 g), which was redissolved in CHCl₃ (5 ml) by gentle warming before dry DME (6 ml) was added. The precipitate which formed was redissolved by the addition of a minimum (1-2 ml) of CHCl₃ and the solution was cooled to 0°C before seed crystals (5-10 mg) of (RR) -DP18C6.KNO₃ were introduced. After 16 h under Ar at -30°C, the crystalline product (0.74 g), m.p. 162-165°C, was collected following filtration and washing with n-hexane. The 1:1 complex (RR)-DP18C6.KNO₃ was redissolved in CHCl₃ (5 ml) and the KNO₃ removed by repeated aqueous extraction. Concentration of the CHCl₃ solution afforded pure (RR)-DP18C6 (0.56 g, 36%), m.p. 81-83°C, [α]_D +20.9° (c, 1.55 in CHCl₃), δ _H (CDCl₃) 3.42-3.90 (20 H, m, 10 x CH₂), 4.55 (2 H, s, 2 x CH), and 6.98-7.25 (10 H, m, 2 x C₆H₅). A similar procedure was used to prepare (SS)-DP18C6, m.p. 82-84°C,

 $[\alpha]_D$ -21.3° (c, 1.21 in CHCl₃) in 27% yield from (SS)-hydrobenzoin.

22. We are grateful to ICI FCMO and ICI C&P Limited, and the Science and Engineering, and Agricuftural *and* Food Research Councils in the UK for financial support.

(Received in UK 9 May 1989)